Semi-Supervised Bayesian Classification of Materials with Impact-Echo Signals

نویسندگان

  • Jorge Igual
  • Addisson Salazar
  • Gonzalo Safont
  • Luis Vergara
چکیده

The detection and identification of internal defects in a material require the use of some technology that translates the hidden interior damages into observable signals with different signature-defect correspondences. We apply impact-echo techniques for this purpose. The materials are classified according to their defective status (homogeneous, one defect or multiple defects) and kind of defect (hole or crack, passing through or not). Every specimen is impacted by a hammer, and the spectrum of the propagated wave is recorded. This spectrum is the input data to a Bayesian classifier that is based on the modeling of the conditional probabilities with a mixture of Gaussians. The parameters of the Gaussian mixtures and the class probabilities are estimated using an extended expectation-maximization algorithm. The advantage of our proposal is that it is flexible, since it obtains good results for a wide range of models even under little supervision; e.g., it obtains a harmonic average of precision and recall value of 92.38% given only a 10% supervision ratio. We test the method with real specimens made of aluminum alloy. The results show that the algorithm works very well. This technique could be applied in many industrial problems, such as the optimization of the marble cutting process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk

This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...

متن کامل

Semi-Supervised Learning of Mixture Models and Bayesian Networks

This paper analyzes the performance of semisupervised learning of mixture models. We show that unlabeled data can lead to an increase in classification error even in situations where additional labeled data would decrease classification error. This behavior contradicts several empirical results reported in the literature. We present a mathematical analysis of this “degradation” phenomenon and s...

متن کامل

A general procedure for learning mixtures of independent component analyzers

This paper presents a new procedure for learning mixtures of independent component analyzers. The procedure includes non-parametric estimation of the source densities, supervised-unsupervised learning of the model parameters, incorporation of any independent component analysis (ICA) algorithm into the learning of the ICA mixtures, and estimation of residual dependencies after training for corre...

متن کامل

Automatic Classification of Impact-Echo Spectra I

We investigate the application of artificial neural networks (ANNs) to the classification of spectra from impact-echo signals. In this paper we provide analyses from simulated signals and the second part paper details results of lab experiments. The data set for this research consists of sonic and ultrasonic impact-echo signal spectra obtained from 100 3D-finite element models. These spectra, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015